Announcement

Collapse
No announcement yet.

FAO Dr. McIntire

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • FAO Dr. McIntire

    Biological Response of the Intervertebral Disc to Repetitive Short Term Cyclic Torsion
    Chan, Samantha C.W. MPhil; Ferguson, Stephen J. PhD; Wuertz, Karin PhD; Gantenbein-Ritter, Benjamin PhD
    Published Ahead-of-Print
    Collapse Box
    Abstract

    Study Design. In-vitro study of the biological response of the intervertebral disc (IVD) to cyclic torsion using bovine caudal IVDs.

    Objective. The aim of the study was to evaluate the biological response of the IVD to repetitive cyclic torsion of varying magnitudes at a physiological frequency.

    Summary of Background Data. Mechanical loading is known to be risk factor for disc degeneration (DD), but the role of torsion in DD is controversial. It has been suggested that a small magnitude of spinal rotation decreases spinal pressure, increases spinal length and enhances nutrition exchange in the IVD. However, athletes who participate actively in sports involving torsional movement of the spine are frequently diagnosed with DD and/or disc prolapse.

    Methods. Bovine caudal discs with endplates were harvested and kept in custom made chambers for in-vitro culture and mechanical stimulation. Torsion was applied to the explants for 1-hour/day over 4 consecutive days using a servohydraulic testing machine. The biological response was evaluated by cell viability, metabolic activity, gene expression, glycosaminoglycan content and histological evaluation.

    Results. A significantly higher cell viability was found in the inner annulus of the 2[degrees] torsion group than in the static control group. A trend of decreasing metabolic activity in the nucleus pulposus with increasing torsion magnitude was observed. Apoptotic activity in the nucleus pulposus was significantly increased with 5[degrees] torsion. No statistical significant difference in gene expression was found between the three torsion angles. No visible change in matrix organization could be observed by histological evaluation.

    Conclusion. The IVD can tolerate short-term repetitive cyclic torsion, as tested in this study. A small angle of cyclic torsion can be beneficial to the IVD in organ culture, possibly by improving nutrition and waste exchange, whereas large torsion angle may cause damage to disc in the long term.

    (C) 2011 Lippincott Williams & Wilkins, Inc.
    Sharon, mother of identical twin girls with scoliosis

    No island of sanity.

    Question: What do you call alternative medicine that works?
    Answer: Medicine


    "We are all African."

  • #2
    These studies are pretty interesting. I've discussed these in various groups about the benefits/risks associated with trunk rotation. The thing I keep coming back to is the major differences in the amount of torsion or work applied to the spine incubations versus what someone goes through while working out, i.e. the incubations undergo a bunch more stress than working out. However, these studies elucidate a lot of good information.

    Comment


    • #3
      That's coming out in Spine, by the way. I just noticed it didn't say.
      Sharon, mother of identical twin girls with scoliosis

      No island of sanity.

      Question: What do you call alternative medicine that works?
      Answer: Medicine


      "We are all African."

      Comment


      • #4
        Not that that should be construed as this article being correct. :-)

        In-vitro spines. Geez.
        Sharon, mother of identical twin girls with scoliosis

        No island of sanity.

        Question: What do you call alternative medicine that works?
        Answer: Medicine


        "We are all African."

        Comment

        Working...
        X